
MSc Artificial Intelligence
Master Thesis

Aiding Age Estimation with 3D
Facial Geometry

by

Nedko Dimitrov Savov
11404345

September 28, 2018

36 EC
March 26 - September 7, 2018

Supervisor:
Dr Sezer Karaoglu

Assessor:
Prof. Dr Theo Gevers

Informatics Institute
University of Amsterdam



Abstract

In this work, we present deep network architectures that aim to improve age
prediction by making use of 3D facial geometry. The exploited 3D geometry fea-
tures were learned by a model which predicts a 3D face model from a 2D image.
In addition, we propose a novel class distance loss for age estimation that penalizes
high probability of distanced classes from the ground truth one. This allows age
estimation to learn age-related features for a small interval around the ground truth
age. We show that monocular 3D face reconstruction implicitly learns 3D facial
geometry features that are age representative. Jointly learning age and 3D facial
geometry lead to a significant improvement in the accuracy of age estimation. The
sources of improvement are identified to be the features from monocular face recon-
struction and the capability of multi-task learning. The proposed model helps to
give better predictions the most for extreme poses and intensive expression.
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Chapter 1
Introduction

Human faces are a source of important information about a person’s background
and mind state. They encode emotion, intent, ethnicity, identity, gender, and age.
Two sets of problems have been recognized regarding the information that a face
contains. One deals with extracting the encoded information and the other - with
generating faces with certain characteristics. Among other uses, automated systems
that are aware of a person’s identity can track people in a large audience [Turk and
Pentland, 1999] or make a decision if a person can have access to a certain location
[Coffin and Ingram, 1999]; robots that are able to track the user’s emotional response
can behave accordingly [Liu et al., 2017].

One of the tasks for extracting information from a face is age estimation. Its
goal is to predict the age of an individual by a picture of the person’s face. Age
estimation has many potential uses. In management, it can be employed for getting
to know what age groups are interested in what kind of products, services, and
entertainment by monitoring the clients. Currently, when refugees without sufficient
documentation arrive, advanced dental age estimation is performed [Sykes et al.,
2017]. It would be helpful to have a fast automatic estimation from an image
instead. Vending machines for tobacco and alcohol must also be able to tell if a
client is old enough. Age can serve as a soft biometric to improve upon the primary
biometrics. Other tasks, like face recognition, are affected by the progressing of
age and can adopt age estimation features or networks in their architectures [Zheng
et al., 2017].

Age estimation is a challenging task. The reasons for that are the properties of
aging, addressed by[Angulu et al., 2018, Geng et al., 2007]. It is irreversible and
uncontrollable, which makes collecting well-distributed data problematic. Also, due
to genetics, environment, and lifestyle, aging can go very differently for different
people. Being a temporal process, the current state of appearance affects future
appearances but not the past ones. To capture the aging pattern of one individual
many images have to be available over small intervals of time. As aging is a slow
process, collecting complete datasets of many people from childhood to old age is a
complex task.

Until not long ago, a large part of predominant methods for performing age
estimation was based on handcrafted features, sensitive to wrinkles, skin texture
and 2D shapes - Local Binary Patterns [Phillips et al., 2000, Yang and Ai, 2007],
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CHAPTER 1. INTRODUCTION

Bio-Inspired Features [Guo et al., 2009], Gabor features [Gao and Ai, 2009]. In these
solutions, the accuracy of age prediction is capped to the capabilities of the designed
features. It would be more helpful to learn and develop features automatically to do
better at prediction. Another set of solutions were based on biological theories. The
distances between predefined face landmarks on a frontal face were used [Kwon et al.,
1994, Farkas, 1994] and the idea that aging is a process that is different for different
individuals [Geng et al., 2007]. The disadvantages are respectively sensitivity to
face pose and requiring more complete data. Manifold learning was also employed
to find a low dimensional representation of age based on images [Fu et al., 2007],
but the manifold mapping functions were too simple to represent well the face-age
relationship.

In the recent years, an unprecedented increase of development and improvement
of deep learning models for a wide variety of tasks has been observed. With large
enough datasets of labeled faces becoming available, deep learning also proved very
effective with processing and generation of digital face imagery. Deep learning al-
gorithms were found to be a good fit for age estimation as it can generalize over
incomplete data [Zhang et al., 2016]. Convolutional neural networks (CNNs) gave
higher accuracy than before for age prediction [Yang et al., 2015, Hu et al., 2017,
Levi and Hassner, 2015, Zhang et al., 2017, Rothe et al., 2018, Sun et al., 2017]. In-
stead of mapping a full image to a certain age, as in manifold learning, CNNs reason
by automatically learning efficient age-related features inside their structure, derived
from the input 2D image. The automatic learning removes the need to manually
represent human domain knowledge in the solution. Because of the convolutions,
the features are local to parts of the image.

The development of a face can be divided into two stages: from birth to adult-
hood and from adulthood to old age [Angulu et al., 2018]. Fig. 1.1 shows some
examples of aging faces. In the first stage, changes are very dynamic and to the
largest extent related to geometry. A baby’s face covers a small, roundish area,
the eyes are relatively large, the profile is more concave than an adult face, with
a protuberant forehead. The nasal bridge is lower and the skin is soft and smooth
[Alley, 1988]. With age progressing, the size of the head increases and the bone
structure continues developing. The face is extending upwards, making the fore-
head slope back while the chin becomes more protruding. With the expansion of
the face cheeks, eyes, nose, and mouth also expand to cover the new area.

In craniofacial development theory, the face extension is modeled by the cardioid
strain transformation [Todd et al., 1980], shown in Fig. 1.2. It describes facial
growth by transforming a circle. This transformation was claimed to be self-sufficient
for describing age in young faces as perceived by people. However, it is certainly
not the only characteristic for aging.

The second stage is more related to skin appearance changes - wrinkles, blem-
ishes, sagging [Angulu et al., 2018]. The skin properties can be well captured from
age estimation making use of only a 2D image. Many research works are focused
on making better use of wrinkle and skin texture features specifically [Choi et al.,
2011, Hayashi et al., 2002, Ng, 2015]. In this stage of development, fat is depositing
in different areas of the face while disappearing from others, which also changes the
geometry in a subtle way. The corners of the mouth move to form a slight frown.
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CHAPTER 1. INTRODUCTION

Figure 1.1: Examples of age progression patterns from the FGNET dataset. Source:
[Lanitis, 2008]

Figure 1.2: (a) visualization of the cardioid strain transformation (b) the craniofacial
development modeled by the cardioid strain - k is a growth related parameter.
Source: [Ramanathan and Chellappa, 2006]

The overall shape of the face also changes, especially in women. [Zhuang et al., 2010]
compare a group of people older than 45 years old with an age group between 18
and 29 years old. The comparison is made with the principal components calculated
with PCA on the two age groups. Principal components correspond to facial shape
properties, derived from distances between facial landmarks. They report that older
people have significantly larger faces, with longer narrower features.

It can be noticed from the age characteristics that were discussed above that 3D
facial shape changes a lot with aging. Additionally, by having 3D face information,
that is independent of extremeness of expression and pose, higher age accuracy can
be expected with non-frontal poses and strong expressions. Classic age estimation
from a 2D image has to learn how a face pose and expression can change in images
without any given cues and by having a large and diverse dataset. However, age
estimation can benefit from the expression and pose invariance of the 3D facial
geometry by handling the concepts of moving in 3D space and changing the facial
expression from the method used to obtain the 3D face information to handle. Then
age estimation can focus on age informative features. Despite the advantages, in
current age estimation solutions, 3D information is not included. [Sun et al., 2017]
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CHAPTER 1. INTRODUCTION

uses 3D geometry only to align properly facial landmarks, which were a source of
information for their age estimation. [Booth et al., 2018] prove that their framework
for representing a 3D face is able to capture age. However, they use a very coarse age
classification into 4 age groups and don’t explore if the 3D geometry is able to help
standard 2D age estimation. Our approach is to provide a representation of the 3D
facial geometry to age estimation and explore to what extent it can benefit from the
3D information. It is also important to make this 3D facial geometry information
supplemental to the features learned given the 2D image. In this way, the model
can learn to consider wrinkles and skin texture for the age prediction - features
especially important for the more mature age groups, as discussed previously.

One way to obtain 3D face information is by employing a 3D scanner - a device
used to capture depth information. However, as nowadays standard cameras are by
default incorporated in mobile devices, they are much more widely available than 3D
scanning equipment. As a result, there is limited 3D scan data available for training
and the application of a model working with 3D scans is also limited to 3D scanners
being available. Therefore, instead of working with 3D scans, we choose to use a
model that obtains 3D facial geometry from a 2D image. In this way, we can still
use a single image as an input. Monocular 3D face reconstruction is a task that aims
at generating a 3D model of a face given a single image. It has been developing in
an effort to create virtual environment avatars [Bouaziz et al., 2013] and to advance
video editing - e.g to be used for face replacement and facial reenactment [Thies
et al., 2016, Tewari et al., 2017], without the costly effort of a 3D artist.

Approaches, tackling this problem, use statistical 3D models that represent 3D
faces with a low dimensional parameter code vector [Blanz and Vetter, 1999, Paysan
et al., 2009, Booth et al., 2018, Gerig et al., 2018]. This code vector contains the
encoded facial shape, skin texture and additional parameters depending on the sta-
tistical 3D model - e.g. illumination and identity. Statistical 3D models achieve
biological correctness by modeling variation of the positions of a large set of points
on a face. Thus, they can also capture biological attributes, including age, weight,
gender, nose shape, distinctiveness, etc [Paysan et al., 2009, Booth et al., 2018].
Monocular 3D face reconstruction learns the code vectors that lead to the most
likely-looking 3D reconstruction of an input image. In this thesis, we show that
monocular 3D face reconstruction is able to capture age information in the parame-
ter code vector. It would be helpful to employ the implicitly learned age information,
contained in the face shape features, for age estimation.

The optimization can be done iteratively [Blanz and Vetter, 1999, Vlasic et al.,
2005, Thies et al., 2016] or with a convolutional neural network [Sela et al., 2017,
Wang et al., 2017, Kemelmacher-Shlizerman and Basri, 2011, Tewari et al., 2017].
Having solutions with convolutional neural networks for both age estimation and
monocular face reconstruction, we can combine their features with multi-task learn-
ing. In this way 2D age features, encoding skin texture, and wrinkles can be com-
bined with 3D facial geometry features, containing information about the already
discussed 3D facial shape characteristics of age progression. To the best of our
knowledge, this has not been attempted before.

Regarding the multi-task learning, we use a soft parameter sharing method
[Misra et al., 2016]. This means that the model is able to learn which part of
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1.1. RESEARCH QUESTIONS CHAPTER 1. INTRODUCTION

the architecture to share and to what extent. A significant improvement of the age
predictions compared to the baseline was observed. Cross-dataset evaluation is per-
formed to confirm these better scores in multiple datasets and further experiments
are performed to find the source and conditions for improvement. The facial ge-
ometry features are shown to be a very good choice of initialization for regular age
estimation.

1.1 Research Questions

The subject of this research is to find out if 3D facial shape features, generated
from monocular face reconstruction algorithm, can be helpful to age estimation by
combining them with the features from a traditional age estimation approach. Thus,
the research questions to be answered are:

1. Can monocular 3D face reconstruction produce 3D facial geometry
that is age discriminative?

2. Can combined traditional age estimation with 3D facial geometry
lead to improved age predictions?

1.2 Contributions

The main contributions of this thesis are:

• We are the first to show that 3D face geometry learned from a single image is
age informative.

• We are the first proposing to combine traditional age estimation and 3D facial
geometry through multi-task learning.

• We propose a new loss for introducing distance in classification tasks.

• We perform extensive analysis of where the improvement of age prediction by
3D facial geometry is focused.

• We show the benefit of using 3D facial geometry features as a pretraining for
age estimation.

1.3 Organization

This thesis starts by giving a theoretical background in Chapter 2. The de-
scribed works are related to monocular face reconstruction, statistical 3D models
representing a face, age estimation, and multi-task learning. Having all the nec-
essary knowledge, in Chapter 3 the choices for the monocular face reconstruction
pipeline and the age estimation models are discussed, together with the age pre-
diction losses that are considered and the evaluation metric. Also, the multi-task
learning in the context of this work is discussed in detail. In Chapter 4 the datasets
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that were used are described, with the details about their cleaning and building
balanced batches for training. Then, the performed experiments’ setup and results
are discussed. Chapter 5 contains the conclusions reached, the identified problems
and challenges, and gives ideas for future work on the topic.
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Chapter 2
Background

2.1 Age Estimation

Age estimation can be trained to predict real or apparent age. In this work,
we focus on real age estimation, as we do claim that the used 3D facial geometry
features are age-related and not that they are directly related to human perception.
Also, to make the problem more bearable, it is not uncommon to simplify it to a
classification into age groups. Current solutions attempt to deal with up to the
year predictions and to be relevant, the age estimation in this thesis has the same
granularity.

Anthropometric models consider the distances between facial points as a source
of information for age [Kwon et al., 1994]. [Farkas, 1994] defines those distances
based on 57 landmarks on the face. Anthropometric models are discriminative only
in young age ranges, as the distances change mostly in this time period. They
consider the distances between the landmarks on a 2D image. Taking only this
information, however, leads to the problem of pose sensitive results, as the metrics
are available for a frontal face.

Active Appearance Models [Cootes et al., 2001] were then developed to consider
the appearance of the face (texture) in addition to its geometry. Both were modeled
statistically with PCA, as will be explained in Section 2.2.2. The result is two low
dimensional vectors, representing face geometry and appearance. However, shape
here is based purely on information from landmarks. Age can be then estimated
on the shape and texture vectors representing an input image [Lanitis et al., 2002].
Linear embeddings of interpretable parameters containing age information is also a
centerpiece of this thesis. However, our approach makes use of lower level features
used to estimate parameters for a much more advanced statistical model and it
is the additional source of information to a standard deep learning age estimation.
[Eidinger et al., 2014] deals with age estimation from in the wild images by adopting
a dropout support vector machine.

[Fu et al., 2007] introduced manifold learning for age estimation. They work with
an image space I, represented by a set of aligned face images, and a ground truth
labels set A. It is aimed to find an approximation Y of a low-dimensional manifold M
in the image space, informative of age-face relationship. For the manifold estimation,
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2.1. AGE ESTIMATION CHAPTER 2. BACKGROUND

they test four different linear methods separately. Having the manifold, the goal is
to find a function f, such that f(M) = age. Since an approximation Y of M is
available from the limited amount of examples, an approximation f̂ is estimated by
regression, such that f̂(Y ) = A. The regression estimates a quadratic function with
the least squares error. To infer the age of a new face image, it is first mapped
to the estimated manifold and then ran through the learned function to obtain the
prediction. However, a quadratic function is too simple to represent well the age-face
relationship.

[Geng et al., 2007] focus on aging as a personalized process in their AGES algo-
rithm. They worked with aging patterns - features extracted from an image sequence
of an aging individual. They estimated a low dimensional space with aging patterns.
The prediction was made by projecting the image in this space and selecting the age
and aging pattern that give minimal reconstruction error. However, AGES models
full face aging patterns instead of separate cues for aging. This is why it requires
a dataset of individuals, each being photographed at different ages. Current deep
learning algorithms can find common age cues between different faces with similar
age and do not have this requirement.

Another approach is to employ handcrafted features which are discriminative
for texture, shape, and wrinkles. For every image in the dataset, these features are
computed and then age estimation is trained on them. Existing methods utilize LBP
(Local Binary Patterns) [Phillips et al., 2000, Yang and Ai, 2007], BIF (Bio-Inspired
Features) [Guo et al., 2009] and Gabor features [Gao and Ai, 2009]. However, deep
learning has the power to automatically learn more efficient task-specific features
and outperforms these methods.

[Levi and Hassner, 2015] and [Wang et al., 2015] develop the first CNN archi-
tectures for estimating age and gender and show that they significantly outper-
form previous state-of-the-art methods. Their work clearly shows the advantages of
employing deep learning for age estimation. [Zhang et al., 2017] designed a deep
architecture with residual blocks to deal with the overfitting problem and report
improved age predictions over other CNN architectures. This thesis is focused on
up to the year predictions, which is not the case with [Levi and Hassner, 2015] and
[Zhang et al., 2017], where evaluation is performed on the Adience benchmark for
age group classification.

[Yang et al., 2015] takes up the task of apparent age estimation by modeling the
uncertainty of the labels in the final loss, preceded by a CNN. A lot of image data
is available, labeled only with a date of creation but no subject age information. In
this case, the amount of time between taking two photos can be informative. [Hu
et al., 2017] trained an age difference estimator between two images, given this kind
of data and combined it with a ground truth age estimator.

[Rothe et al., 2018] proposed the Deep Expectation (DEX) algorithm - a state-
of-the-art age estimator that classifies age and refines the inference prediction with
a softmax expectation. It is the winner of the LAP 2015 challenge. In DEX each
class is a range of consecutive ages. There are a lot of classes with short ranges -
usually, each class represents one integer age. The use of expectation is to consider
all the probabilities in the softmax - the smoothing can regularize training on noisy
data.
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2.2. 3D FACE MODELS CHAPTER 2. BACKGROUND

Age can be seen as a regression or classification problem. Regression methods
are sensitive to outliers and classifiers have the problems that by default they do
not consider distance and easily overfit. [Angulu et al., 2018] discusses that which
one is better depends on the quality of the images, data distribution, and feature
extraction. However, [Rothe et al., 2018] clearly shows that an advantage of classi-
fication, together with expectation over the softmax, is dealing better with noise in
the more widely available data with noisy age labels.

All the research addressed so far is based on working with 2D images only. There
is a limited amount of work on age estimation that considers 3D facial information
in some way. [Booth et al., 2018] presents age estimation ran on the vector, repre-
senting the shape of different Statistical Shape Models (SSM). SSMs are frameworks
to generate 3D face models given a few low dimensional vectors, one of which rep-
resents the 3D geometry. The vectors were learned from a dataset of 3D face scans.
More details on SSMs are available in Section 2.2.2. An SVM was trained to dis-
tinguish between four age groups, covering their large dataset. The achieved test
accuracy on Basel Face Model 2009 was 71% and on their LSFM model - 74%. The
high accuracy shows that the SSM’s representation of 3D geometry carries age in-
formation. In this thesis, we perform an up-to-the-year age estimation, in contrast
with the just 4 age groups in [Booth et al., 2018]. While they estimate age di-
rectly from given SSM code vectors, we take as input a face image, the 3D geometry
features of which we obtain with a monocular face reconstruction solution. [Sun
et al., 2017] created architectures, which directs the attention to local informative
face patches, surrounding specific landmarks. To ensure pose invariance, the land-
marks are projected from an estimated 3DMM. In one channel, a CNN processes
the stacked patches, in another - they are processed from separate CNNs without
weight sharing and in a third - the whole face is processed by another CNN. The
three channels are combined with late fusion. Despite the impressive results, the
architecture is quite elaborate. Also, the 3D model is only used to map landmarks
more precisely and the focus of this thesis is to introduce the 3D facial geometry as
a source of information for age estimation.

2.2 3D Face Models

2.2.1 3D Models

A 3D model represents an object by a set of points in a 3D space and connec-
tions between those points, which guide the forming of the surfaces of the object.
Although there are different ways to define the surfaces, the used one in this work
is the polygonal modeling. The appropriate neighboring points, also called vertices,
are connected with lines, thus forming polygons. The configuration of these polygons
is called a polygon mesh. A typically chosen polygon for the mesh is the triangle,
mainly because the generation performance for triangle meshes is very high. An
example of a triangle mesh is shown in Fig. 2.1.

To add a color texture to the model, each of the vertices is assigned a color - 3
values for the red, green and blue channels of the color. An arbitrary point inside a
triangle in a triangle mesh can be colored by interpolation of the color of the three

9



2.2. 3D FACE MODELS CHAPTER 2. BACKGROUND

(a) Triangle mesh with different lev-
els of coarseness. Source: http://

studentsrepo.um.edu.my/6408/

1/NgoCheeGuan_SGJ130008.pdf

(b) A completed model with applied
texture and estimated normals.
Source: https://www.cc.gatech.

edu/~turk/bunny/bunny.html

Figure 2.1

vertices. Sometimes it is more useful to have a separate mesh for texturing than the
one for geometry - in that case, a different texture resolution is possible compared
to geometry.

To model lighting, a type of function, called Bidirectional Reflectance Distribu-
tion Function (BRDF), is needed. This function describes how light is reflected at
an opaque surface. BRDFs, for example, can regulate if the surface has speculari-
ties or is diffuse. BRDFs require an information about the surface at the point, at
which the reflectance distribution is estimated - the perpendicular unit vector to the
surface, called the normal vector. To include this information, the 3 coordinates of
the normal vector are stored for each geometry vertex. For the surface to appear
smooth and not divided into polygons, the normals are interpolated in the triangle
mesh in the same way as the colors in texturing.

2.2.2 Statistical Shape Models

3D models with fixed positions of vertices, colors, and normals can represent a
face. However, faces are not rigid bodies, meaning that their surface can dynamically
change - for example with different facial expressions and aging. Changing identity
characteristics can also be thought of as a dynamic transformation of a face. Identity
and expression transformations can be modeled by statistical methods on a dataset
of many different scanned faces. Statistical Shape Models (SSM) are approaches that
all use the following stages of generation: first, all the 3D models in the dataset must
be aligned by having the same vertices at the same exact anatomical position on the
face; second, a multivariate distribution is used to capture variability of the aligned
vertices’ positions; third, a linear dimensionality reduction is performed; finally, new
faces can be created by adding variance, according to the result from the previous
step, to a mean face. The expressiveness of such models is demonstrated in Fig 2.2.
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2.2. 3D FACE MODELS CHAPTER 2. BACKGROUND

It has to be noted that these approaches can represent any kinds of shapes.
Early SSMs are the Active Shape Models [Cootes et al., 1995]. They were de-

signed to represent a range of possible 2D contours of an object for the purpose of
object detection at the time.

An especially popular family of SSMs are the 3D Morphable Models (3DMM),
originally proposed by [Blanz and Vetter, 1999]. They can represent the shape and
texture of a face. The building process of 3DMMs is next described, as it is the
basis for how the selected morphable model for this thesis works.

Figure 2.2: Visualization of the ex-
pressiveness of a statistical shape
model. Deviating in specific direc-
tions from the mean shape and texture
(on top) lead to gradually chang-
ing semantic face attributes. Source:
https://www.slideserve.com/apria/

3d-face-modeling

First, it has to be ensured that the
vertices in all the scans from the dataset
exist and correspond to the same spot
in all of the 3D models. This is impor-
tant for anatomical correctness, which
later gives PCA the power to recog-
nize how those anatomical characteris-
tics jointly change between faces. The
original approach is to parameterize the
surface by projecting the 3D face (3D
Cartesian coordinates) onto a cylinder
that surrounds it (2d cylindrical coor-
dinates). This transforms the problem
of 3D models mapping into 2D image
mapping (registration), which is better
studied. Then the correspondences are
found with optical flow - an algorithm
which computes a flow field that min-
imizes the differences between the two
images. Originally, only 200 faces were
used, making the model fragile. [Pa-
tel and Smith, 2009] and [Cosker et al.,
2011] attempted to reduce the effects by
the use of thin plate splines (TPS).

An alternative approach is to di-
rectly find correspondences in 3D space
by employing versions of Iterative Clos-
est Point (ICP) algorithm [Besl and
McKay, 1992]. The Basel Face Model
09 [Paysan et al., 2009] is a 3DMM that
adopts Optimal Step Nonrigid Iterative
Closest Point (NICP) [Amberg et al.,
2008] to align the dataset with a tem-
plate.

The shape is established to be the vector of Cartesian coordinates of the aligned
vertices S and the texture - the vector of RGB values T . New faces can be obtained
by linear combinations of the shapes Si

m
i=1 and textures Ti

m
i=1 of the aligned faces:
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Smodel =
m∑
i=1

aiSi Tmodel =
m∑
i=1

biTi

m∑
i=1

ai =
m∑
i=1

bi = 1 (2.1)

The appearance of the new face is controlled by the parameter vectors a and b.
Now a distribution over those parameters is computed, which is the likelihood of
the resulting appearance and it will ensure that the generated model looks like a
face. It is a multivariate normal distribution with mean - the average shape S̄, and
texture T̄ and covariances containing the shape and texture differences of each of
the models from the mean.

So far the size of the parameter vectors is the size of the dataset. A more compact
representation is required. Principal Component Analysis (PCA) is a technique
for dimensionality reduction that preserves most of the information (variance) of
the original dataset. [Wold et al., 1987] discusses in detail how PCA works. After
applying PCA with the covariances of the estimated distribution, a and b are reduced
to α and β, which are now controlling the eigenvectors si and ti of the covariance
matrices. New face models are computed with:

Smodel = S̄ +
m∑
i=1

αisi Tmodel = T̄ +
m∑
i=1

βiti

m∑
i=1

ai =
m∑
i=1

bi = 1 (2.2)

In the paper, they also identify linear combinations of parameters that change
specific attributes of the face - weight, mouth width, femininity, more or less bony
facial structure, some facial expressions. As these attributes were automatically
learned without special guidance, this shows promise that age can also be potentially
represented from this kind of statistically built models.

The underlying data, used for building the model, has a great impact on how
expressive it is. In [Booth et al., 2018] they use a large proprietary dataset (10000
3D scans) to create LSFM - an accurate 3DMM. Their approach was to find corre-
spondences with NICP and outlier pruning. They show that LSFM allows for two
times more identity variation than the then available state-of-the-art models, with
improved representation of ethnicity and age.

Additionally, expressions can be modeled with blendshapes. They are a collection
of 3D face models with different expressions. They are blended together to constitute
new expressions. Just as texture and shape, they are represented as a variation on
top of a mean - in this case, the neutral face. This technique is done by [Bouaziz
et al., 2013] to transfer expressions of real faces to a virtual avatar.

2.2.3 Gaussian Process Morphable Model

Gaussian Process Morphable Models (GPMM) [Lüthi et al., 2017] are a gener-
alization of SSMs. In contrast with SSMs, GPMMs are not limited to model shape
variation linearly - this is done by a Gaussian process.

Basel Face Model 2017 (BFM 2017) [Gerig et al., 2018] is a publicly available
morphable model, the successor of the Basel Face Model 09. It employs Gaussian
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processes because they allow much easier control of the face shape variation. They
find a linear approximation of this model to make it tractable. Because of the
superior quality and expressiveness of this morphable model, it was chosen as a
major component of the monocular face reconstruction pipeline. For this reason, it
is next described in detail.

In GPMMs, by applying a deformation field u : ΓR → Rd on a reference shape
ΓR, a new shape ΓT = {x + u(x)|x ∈ ΓR} is derived. The assumption is that any
shape can be represented in that way. The deformation field is a Gaussian process
GP (µ, k), where µ is a mean function and k : ΓR × ΓR → R3×3 - a covariance
function, also known as kernel. ΓR is normally chosen to be the mean face computed
from the dataset and µ is zero in that case, as no mean deformation is needed for
this choice of reference. Then, to find the best transformation, it comes down to
solving the MAP problem:

argmaxup(u|ΓT ,ΓR) = argmaxup(u)p(ΓT |u,ΓR) (2.3)

The likelihood p(ΓT |u,ΓR) is chosen to be based on the vertex-wise distance
between the original shape ΓT and the result of the deformation field u. Then, an
approximation is made of u with the truncated Karhunen-Loève expansion [Huang
et al., 2001]. This results in a linear combination of known basis functions φi and
weights λi, parameterized by a vector α:

ũ(α, x) = µ(x) +
r∑
i=1

αi
√
λiφi(x), αi N(0, 1) (2.4)

The probability of the deformation p(u) is now fully determined by the alpha
parameters, which are normally distributed: p(ũ) = p(α) = N(0, Ir×r). Now the
MAP problem can be solved.

A big advantage of Gaussian processes is that it allows controlling the modeling
of the surface through the choice of the kernel k. In BFM 2017, they have a kernel
that defines the deformation and makes it stronger at certain non-smooth parts
of the face, a kernel for preserving face symmetry and another one for modeling
expressions. A combination of those forms the kernel of the Gaussian process. BFM
2017 models separately not only shape and texture but also facial expression by
employing the methods in [Amberg et al., 2008].

2.3 Monocular 3D Face Reconstruction

3D Face reconstruction is the task of creating a 3D representation of a face given
sensor data, capturing the face. Monocular 3D face reconstruction deals with creat-
ing the model, given only a single RGB image. Such reconstructions are visualized
in Fig. 2.3, where the resulting 3D model is aligned to the face in the original image.

Obtaining a 3D model given a single RGB image is an ill-posed problem. So-
lutions attempt to divide the scene into multiple components - illumination, face
reflectance, albedo, shape, expression, only based on the color information from the
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Figure 2.3: Monocular face reconstructions produced by MoFA and visualization of
the separate parameters. Source: [Tewari et al., 2017]

image. Assumptions and simplifications are made when obtaining the components.
For example, lighting is usually assumed to be distanced and low frequency and
it is modeled by the Spherical Harmonics framework, which is limited concerning
physical correctness and requires Lambertian assumption for reflectance.

When taking a picture, 3D geometry is being projected on a plane, according to
the properties and position of the camera. More precisely, a point x is first mapped
from a global coordinate system to the relative coordinate system of the camera by
applying rotation R and translation t (camera extrinsics): x̂ = Rx + t. Then it is
projected to a plane by the operator Π: Π(x̂). Finally, the effect of the properties
of the camera K is applied to get the point p in the image: p = KΠ(x̂). This whole
processed is called image formation. When reconstructing the 3D geometry from
the image, this process has to be reversed.

The general approach for solving the task at hand is to find the parameters of the
separate scene components that constitute a 3D model. The loss or energy functions
in these algorithms consist of multiple components. A typically used component
is photometric consistency (photometric loss) - the RGB difference between the
original image and the rendered aligned predicted face reconstruction. It can be a
pixel-wise difference of all the pixels in both images (full photometric loss), or the
difference only of the pixels, corresponding to a vertex from the predicted 3D model
(vertex-wise photometric loss). Another loss component is landmark alignment -
the distance between ground truth landmarks and their predicted positions.

Not long ago, the predominant methods for estimation were with iterative opti-
mization of an energy function. Upon introducing the 3DMM, [Blanz and Vetter,
1999] optimizes a photometric consistency term by optical flow to create and align a
reconstruction. [Vlasic et al., 2005] gives an early solution of the face transfer prob-
lem by parametrizing a 3D model space by identity, expression and viseme attributes
with a multilinear model. [Thies et al., 2016] brings the Face2Face architecture, de-
signed for expression transfer between faces. the source’s and target’s morphable
models’ shape, albedo and expression parameters are estimated iteratively, consider-
ing photometric consistency and distance between original and rendered landmarks.
The expression parameters of the source are then assigned to the target to enable
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the facial reenactment. Refer to [Zollhöfer et al., 2018] for an extensive review of
iterative methods in the field.

The more recently explored approach is by adopting regression to estimate the
parameters. [McDonagh et al., 2016] improve face tracking by training a regressor
from synthetic data with the limitation of being actor-specific. [Sela et al., 2017]
employs an image-to-image translation network to estimate a pixel-wise depth map
and a mapping of pixels to 3D model vertices. Given this data, a non-rigid regis-
tration is performed iteratively to create the reconstruction. In [Wang et al., 2017]
they take a different path - representations of expression, pose and 3D information
are directly disentangled from the image by a deep latent variable model.

When making use of a statistical model, it is important to note that the predicted
face surface is smooth - details like wrinkles are not present. [Tran et al., 2017] has
a coarse shape estimation and an encoder-decoder for applying the missing details
by learning bump maps. It can also deal with occlusion well. [Guo et al., 2017]
employ CNN to compute the parameters for a coarse geometry model and another
CNN to transfer fine geometry details onto it. Although the setup can work with
a single image, they improve the reconstruction from an entire video by having a
version of a coarse CNN that considers results from previous frames. [Cao et al.,
2015] explores using a regressor trained on local image patches to add details on a
low-resolution face surface.

[Kemelmacher-Shlizerman and Basri, 2011] uses the Shape from Shading (SfS)
approach that requires the image normals, albedo and illumination to produce a
reconstruction. It iteratively changes a single template to fit the image. [Sengupta
et al., 2018] construct SfSNet - an end-to-end fully deep learning based model for
obtaining facial shape, reflectance and illumination, again based on SfS. Features
for normals, albedo, and Spherical Harmonics lighting are learned by training on
labeled and unlabeled images with photometric loss.

[Tewari et al., 2017] propose MoFA - an end-to-end model, consisting of a CNN,
learning the parameters of a statistical 3D model, and a fully differentiable decoder
that constructs and renders the face, with the photometric loss on top. Its greatest
advantage is the interpretability of the learned parameters from the CNN. This
model was chosen to integrate into the architectures of this work. It is suitable
because all of the features are contained in a single CNN, which can be tied to an
age estimation architecture for it to make use of. Also, the interpretable compact
parameters help with the analysis of the results. The reconstructions of this model
depend a lot on the chosen morphable model. However, in any case, variation is
modeled with PCA which leads to the limitation that the resulting shape and albedo
are smoothed out, missing out on small details. However, age is greatly expressed in
the overall face parts proportions and their shape changes, as discussed in Chapter
1.

The final goal of the field is to produce photorealistic complete heads with details
based on an image. Therefore, research is done on realistically represent eyes, eyelids
[Bérard et al., 2016] and gaze [Wang et al., 2016], mouth interior [Cao et al., 2016,
Thies et al., 2016], lips [Garrido et al., 2016], hair [Chai et al., 2016] and facial
hair [Beeler et al., 2012]. A stride towards this goal is developed in [Kim et al.,
2018], where many face components are implemented for an expression transfer task.
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Notably, head translation and rotation of the source actor are also transferred. In the
current work, only the facial reconstruction is necessary for aiding age estimation.

2.4 Multi-Task Learning

A typical machine learning model solves one task by optimizing a metric through
an error function. After tuning the parameters, a threshold is reached where per-
formance does not increase anymore. However, by considering another task at the
same time and optimizing its metric, a new source of information becomes available.
It can help the model to capture more informative features for the first task and to
make it generalize better. Optimizing multiple loss functions at the same time is
called Multi-Task Learning (MTL) [Ruder, 2017]. An advantage of this approach is
increased regularization capability. This is achieved by finding representation close
to all the tasks, preventing the capturing of dataset-specific biases.

Early multi-task learning algorithms apply block-sparse regularization. The idea
is that, if the parameters of all the tasks to be optimized are organized in a matrix,
where each column contains all the features from one task and each row represents
a feature, an assumption can be made that the important shared features between
all the tasks are few and hence the matrix is sparse. To enforce the assumption
[Argyriou et al., 2007, Zhang et al., 2008] use different combinations of l1, l2 and
linf norms for most of the features - the remaining ones contain the shared infor-
mation.[Negahban and Wainwright, 2008] indicates that if the features do not have
much in common between tasks (e.g. because one task is not closely related to all
the others), applying this method can actually harm the final performance.

The research effort was then focused for learning and representing the relatedness
of the tasks and use this information as a prior. [Evgeniou et al., 2005, Jacob et al.,
2009] used the variance of the features between tasks as a measure of clusteredness
of the tasks. Bayesian methods were also very popular in the field. [Heskes, 2000]
enforces feature similarity for different tasks by introducing a prior. In [Bakker and
Heskes, 2003] they make use of a mixture of Gaussians for this similarity, based on
separate Gaussian priors for each task.

[Kumar and Daume III, 2012] base their solution on the assumption that each
task is a linear combination of latent tasks, the scaling parameters of which is a sparse
vector. The overlap between the sparse patterns is what is shared between two tasks.
They form groups of shared tasks (but not disjoint, as in [Kang et al., 2011]). They
use the sparseness and the assumption of low-dimensional representation of shared
information in each group to form an optimization function for multi-task learning.

In deep learning, multi-task learning is divided into two categories. Hard param-
eter sharing sharing is the most basic kind and can be traced to [Caruna, 1993]. It
is achieved by sharing a single deep network for all of the tasks, but each of the tasks
has a separate subarchitecture, as shown in Fig. 2.4. As a single representation for
all the tasks has to be found, overfitting is being reduced in a factor of the number of
the tasks [Baxter, 1997]. In soft parameter sharing there are separate networks for
all of the tasks and their parameters are forced to be closer together by minimizing
a distance metric, as can be seen in Fig 2.4.

Deep Relationship Networks [Long and Wang, 2015] improve hard parameter
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(a) Hard Parameter Sharing

(b) Soft Parameter Sharing

Figure 2.4: The two types of Multi-Task Learning. Source: [Ruder, 2017]

sharing architectures by weighting the task-specific layers with matrix priors to
learn relatedness of the tasks. They have the disadvantage of being difficult to
adapt for different tasks. [Lu et al., 2017] present an automatic way of building
multi-task architectures given a set of tasks. The approach is to start from a fully
shared until the output layers architecture of certain depth and gradually subdivide
the shared layers from top to bottom. The division is determined by task similarity.
The process is greedy and may find non-optimal solutions.

Multi-task learning requires multiple labels for the same input. However, es-
pecially with some less related tasks, suitable datasets are unavailable. Ubernet,
developed by [Kokkinos, 2017], alleviates the problem, combining multiple datasets
by carefully balancing a batch and adjusting the loss according to what labels are
available. They proposed a version of SGD, which applies different learning rates to
different datasets to address any label imbalance while staying memory efficient.

Hard parameter sharing requires the important but difficult choice of which layer
to share. [Misra et al., 2016] introduced Cross-Stitch Networks, which automates
this choice and makes it possible to share multiple layers while preserving a level
of self-dependency for each of the tasks. The sharing of a pair of layers of two
tasks is done by blending their features. The amount of blending is controlled by
trainable parameters. Sharing layers at multiple levels allows a task to make use of
features from another one and can control to what extent to rely on them and on
its own learned features. This architecture was employed in this thesis, as learning
insights can be gained from the blending parameters and it is shown to perform
well. [Ruder12 et al., 2017] designed Sluice Networks, which harvests elements from
block-sparse regularization, cross-stitch networks, and NLP hierarchical structures
models (e.g. [Hashimoto et al., 2016]) to combine their benefits. Even though they
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Figure 2.5: A stitch layer, as proposed by [Misra et al., 2016]. The α trainable
parameters are controlling the blending of the features. Source: [Misra et al., 2016]

achieved better performance than cross-stitch networks, the improvements are small
considering that the architecture is much more complex and difficult to analyze.

[Kendall et al., 2017] help to relieve the burden of determining the weights of
each task in a hard parameter sharing setting by replacing the loss with a sum of
task uncertainties.

As will be established, there is a relation between the tasks considered in this
thesis. Multi-task learning has been long applied for benefiting from such related-
ness, even if it is a weak one. [Zhang et al., 2014] do facial landmark estimation by
jointly learning head pose and face attributes. [Girshick, 2015] jointly learns class
and coordinates of an object. [Cheng et al., 2017] jointly predicts optical flow and
object segmentation.
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Chapter 3
Methodology

In this chapter, we present the detailed descriptions of the chosen age estimation,
monocular reconstruction, and multi-task learning pipelines.

3.1 Monocular 3D Face Reconstruction

MoFA [Tewari et al., 2017] is a state-of-the-art model that combines the gen-
erative and regression-based approaches for 3D face reconstruction from an RGB
image. The goal is to learn with a CNN a semantic code vector, containing the
entire scene information. It is decomposed into facial expression δ ∈ R64, shape
α ∈ R80, skin reflectance (albedo) β ∈ R80, camera rotation T ∈ SO(3), camera
translation t ∈ R3 and scene illumination γ ∈ R9.

x = (α, δ, β, T, t, γ) (3.1)

The interpretability of these parameters is important to analyze to what extent
the shape related features are age discriminative. While other deep learning meth-
ods also learn separate interpretable depth and albedo maps, this one stores the
information in a low-dimensional vector, while performing end-to-end learning with
the help of the differentiable parametric decoder. Another advantage is that all
the learned information is stored in a single base CNN, unlike the configurations of
CNNs in other approaches. This makes it possible to map the features to the ones
in an age estimation CNN with multi-task learning.

The encoder CNN is AlexNet, as in the original implementation. For the shape,
reflectance and expression parameters, the Basel Face Model 2017 is employed. The
vertices V and reflectance at their positions R are then retrieved by:

V = As + Esα + Eeδ (3.2)

R = Ar + Erβ (3.3)

, where Es, Ee and Er are PCA bases for shape, expression, and reflectance, and
As and Ar are respectively the shape and reflectance means, all determined when
building the BFM 2017 model.
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AlexNet

T tα γβ δ

Code vector

Landmarks

Parametric
Decoder 

MoFA Loss

Figure 3.1: The MoFA architecture.

Given the vertices, the normal at each of them is estimated from a local 1-
ring neighborhood. Spherical harmonics [Müller, 1966] is utilized for illumination
modeling, where the γ parameters control colored illumination. The assumption
is that illumination is always Lambertian, distant and low-frequency. Then, the
radiosity at a vertice, given its surface normal n and reflectance r is computed with
the C(.) function:

C(r, n, γ) = r ·
B2∑
b=1

γbHb(n) (3.4)

with B = 3 bands and basis functions Hb(n).
For the rendering, the pinhole camera model is adopted with full perspective

projection Π. The decoder performs standard image formation to create an output
aligned image of the synthetic face. A vertex from V (Eq. 3.2) - Vi, is mapped to
the camera plane by ui(x) = Π(T−1(Vi− t)) and its color is computed from spherical
harmonics: ci(x) = C(Ri, Tni, γ).

The loss of MoFA is a linear combination of photometric loss Ephoto, landmark
distance loss Elan weighted by the respective weights wphoto, wlan and a regularization
term Ereg:

ER(x) = wlanElan(x) + wphotoEphoto(x) + Ereg(x) (3.5)
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The regularization term penalizes faces with high deviations from the mean face.
High deviations of the parameters mean that less likely faces are produced. Penal-
ization is applied for the shape, albedo and blendshape parameters, the extent of
which is controlled by the weights wα, wβ and wδ:

Ereg(x) = wα
∑
i

αi + wβ
∑
i

βi + wδ
∑
i

δi (3.6)

Although it is optional, for more accurate reconstructions, landmark loss is used
in our implementation. The originally proposed vertex-wise photometric loss [Tewari
et al., 2017], shortly described in Section 2.3, was chosen because it preserves better
corner shape details than a full photometric loss.

The general architecture is shown in Fig. 3.1.

3.2 Age Estimation Visual Baseline

We refer to the age estimation pipeline, based completely on the image input
without using geometry features, as the visual baseline.

The input of age estimation is processed as described in Section 4.1. This leaves
us with well-distributed batches of cropped faces. They already have some light form
of rotation augmentation, as no vertical alignment is performed by the adopted face
detector. AlexNet architecture serves as the body of the network. Having the
same base as MoFA makes it possible to utilize the optimized multi-task learning
approach, described in Section 3.3.2. Considering the distribution of the available
datasets, the number of output classes N was set to 81 to represent the ages in the
interval [0, 80].

As mentioned in Section 2.1, the state-of-the-art age estimation employs classi-
fication to outperform the existing best approaches in terms of prediction accuracy.
They train their architecture on the large but noisy IMDB-Wiki dataset and show
that they owe their success to the outlier resistance of classification. We choose clas-
sification in this work to benefit from this noise resistance, especially considering that
our training set is a subset of IMDB-Wiki. However, with pure classification, no
relationships between the classes are enforced. But in our case, there is a natural
order and distance between the age classes - the further away the age prediction is
from the ground truth, the worse it is. We explore losses that introduce distance
between classes in classification. Being explicit about distance, the algorithm can
focus on learning age descriptive features for an interval of years around the ground
truth age.

In this section, we denote the final layer’s activations vector with a, the ground
truth age with y and its one hot encoding with ȳ. a is a single value for regression
and a vector for classification - more specifically, the output of the softmax function.
The minimum and maximum age that a model can predict are denoted accordingly
with m and M . All the loss formulations are meant for a batch of examples. For a
batch of size N , ai and yi are the i-th activation vector and label from the batch.
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Loss functions

[Rothe et al., 2018] calculate the expectation over the softmax distribution to
get a prediction ŷ, but only when testing:

ŷ =
M−m∑
i=0

(i+m) · ai (3.7)

The smoothing helps for a better prediction. For that reason, we also employ
this technique in our models.

The cross entropy loss is a standard classification loss, also applied by the
DEX approach:

CE(a, y) = − 1

N

N∑
k=0

M−m∑
i=0

ȳki · log(aki ) (3.8)

It penalizes equally all the classes and so the distance between a predicted age
and the actual age is not considered. The results in [Rothe et al., 2018] show that
the DEX approach improves the MAE measure of the prediction. Even though a
distance is not explicitly included, the mistakenly predicted classes are close to the
real ones because the high-level features learned in the network correspond to age
ranges.

However, introducing a distance measure in the loss can give the network the
context to decrease this distance even further. A loss like this would have the benefits
of its classification and regression components: resiliency to outliers and a properly
represented relationship between the age classes.

Earth Mover’s Distance (EMD). EMD is a classification loss with class
distance. EMD is the minimum cost to transport the mass of one distribution to
another. In our case, the source is the predicted softmax distribution and the target
is the one hot encoding, which can be viewed as a distribution. The idea is to use
the formulation of the problem for transporting mass from a set of supplier clusters
to a set of consumer clusters. With the help of some basic properties of classification
(the classes are ordered and sorted and the two distributions have equal mass), this
formulation can be simplified. The full loss is shown below:

EMD(a, ȳ) =
1

N

N∑
k=0

(
M−m∑
i=0

|CDFi(ak)− CDFi(ȳk)| −
M−m∑
i=0

ȳki · log(aki )) (3.9)

Here CDF (.) is the cumulative distribution of the given vector. A squared
version of EMD was shown to have a large impact with distance based classes [Hou
et al., 2016]. We choose, however, the non-squared version because of the larger
resistance to outliers and better stability.

Proposed Class Distance Loss (CDL). CDL penalizes having probability mass
away from correct classes. It was constructed as an effort to introduce a version
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of the expectation over the softmax for training. The penalization depends on the
position of the class in respect to the ground truth label class position - the further,
the higher the penalty. It is shown below:

D(a, y) =
1

N

N∑
k=0

(λP (ak, yk) + CE(ak, ȳk)) = (3.10)

1

N

N∑
k=0

(λ
M−m∑
i=0

aki · d(i, yk)−
M−m∑
i=0

ȳki · log(aki )) (3.11)

d(i, y) =|(i+m)− y| (3.12)

It is assumed that each class corresponds to one year of age and that the classes
are indexed in the order of monotonic increase. d(.) is a distance function.

There are two separate terms in the loss that have the same aims as the terms
in EMD loss. The first term is the distance penalty and the second one is cross
entropy meant to guide the network towards the right class. λ is a constant that is
meant to tune the balance between the two terms. Absolute distance is chosen to
be used in this thesis, as it is a natural choice to represent distance and, as already
discussed, outlier resistant.

The gradient of the distance penalty in respect to a single softmax output ai is
shown below:

∂

∂ai
P (a, y) =

∂

∂ai

M−m∑
i=0

ai · d(i, y) (3.13)

=d(i, y) (3.14)

=|(i+m)− y| (3.15)

(3.16)

Figure 3.2: Two examples of how the distance term P of the class distance loss gives
scores. In this setting, there are 9 classes and the ground truth class is the fifth.
The plots in the first column are chosen softmax distributions, in the second - the
penalization of each class for the current example (based on the linear distance) and
in the third - the final penalty for each class.

It can be noticed that the penalty linearly increases with the distance. This is
visualized on the examples provided in Fig. 3.2. The examples show that a more
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spread or incorrectly skewed softmax distribution is penalized more. Meanwhile,
cross entropy would give the same score to both softmax distributions.

3.3 Proposed Multi-Task Learning Models

MoFA

Parametric
Decoder 

MoFA Loss

Code VectorOutput Layer

Age Estimation

Convolution

AlexNet

Max Pool

Local Response Normalization

Max Pool

Local Response Normalization

Convolution

Convolution

Convolution

Convolution

Convolution

Fully Connected

Fully Connected

Convolution Convolution

Real age: 32

Prediction:
29 

Class Distance Loss

Landmarks

Figure 3.3: The hard parameter sharing architecture.
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Both of the models have an AlexNet base CNN. This establishes a correspon-
dence between the layers of the two pipelines. While the features between tasks will
be different themselves, having been processed by the same filter sizes means they
will be at the same scale of detail. The combination of these features is then suit-
able for processing by both pipelines following the shared layer. Also, it is especially
important for many soft parameter sharing methods, because fundamentally differ-
ent features may not benefit from the same prior or, in one of our cases, blending
technique.

3.3.1 Hard Parameter Sharing

First, we build a hard parameter sharing model. A single AlexNet is shared
for both tasks. The idea is that when jointly training, the features on each layer
are enforced to be both rich to age data and to the 3D model related information,
notably including shape. The last layer contains the refined informative features for
each task. The architecture is shown in Fig. 3.3.

The loss is a weighted sum of both tasks with the weight w that should be tuned:

EHPS(x, a, y) = (1− w)ER(x) + wCDL(a, y) (3.17)

3.3.2 Soft Parameter Sharing

There is no guarantee that sharing all of the layers in the CNN base network
is optimal. It is possible that enforcing learning relatedness on lower layers’ more
general features is important, but higher level layers are better left independently
trained by each task to prevent competition between the tasks. One option is to
try out training multiple architectures, in each the last shared layer is chosen to
be different. However, in a deep network like AlexNet, this kind of experiment
becomes infeasible, as it requires not only training an excessive amount of models
but also tuning the weight parameters of the two tasks. This problem is solved by
automatically determining which layers to share and to what extent with the use of
a soft parameter sharing solution - Cross-stitch Networks [Misra et al., 2016].

The approach is to have two instances of a base neural network - A and B, one
for each task. We choose to mark MoFA’s CNN with A and age estimation’s with B.
So-called cross-stitch layers are then inserted in key positions in the deep network.
Stitch layers take activations xi from two layers - one from A and one from B, and
blends them together as follows:

[
x̄iA
x̄iB

]
=

[
αAA, αAB
αBA, αBB

] [
xiA
xiB

]
(3.18)

The α parameters are trained together with the architecture. They are common
for all activations in a pair of layers. In our implementation a cross-stitch layer
calculates a single x̄. This means for mutual sharing, one cross-stitch layer is inserted
in architecture A to calculate x̄A and another one in B to calculate x̄B.
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A choice that has to be made is where to place cross-stitch layers in the ar-
chitecture. [Misra et al., 2016] provides information about good positions for the
new layers inside AlexNet. They place them after all max-pooling layers and fully
connected layers. We make use of this choice and the final architecture is shown in
Fig. 3.4.

If training is directly performed it would be noticed that the α parameters receive
very small updates, as also noted by [Misra et al., 2016]. This is the case because the
neurons from AlexNet give activations a few orders of magnitude lower than what
the α parameters are needed to be. Therefore, a different learning rate is applied to
them. In our implementation, as Adam is chosen as an optimizer, the α parameters
are trained separately from the other parameters with the Adagrad optimizer, to
enforce the higher learning rate.

To battle against overfitting, we apply L2 regularization but only on the age
estimation branch. In this way, there is no extra unnecessary restriction for MoFA,
which already has its own regularization term.

3.4 Evaluation Measure

The chosen age error evaluation metric for all models is Mean Absolute Error
(MAE):

MAE(y, ŷ) =
1

N

N∑
i=0

|ŷi − yi| (3.19)

,where y is a prediction and ŷ is a ground truth label. Here N is the number of
samples that we average.

It is widely employed as an evaluation metric in age estimation research, as it is
a natural way to represent distance. In classification, the measure typically shown
is accuracy percentage of predicting the right class. However, choosing the exact
class is not as important as how close the choice is to the right answer. Hence, the
more informative MAE measure is shown also for classification.

When needed, comparison on MoFA performance is done with the photometric
component of the loss.
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Figure 3.4: The CSN sharing architecture.
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Chapter 4
Experiments

In this chapter, the contributions and the experiments needed to answer the re-
search question are described. First, the datasets further used, their cleaning and
balancing are described. Then the choices for age estimation are established and
MoFA is trained and tested for implicit age information. The following experi-
ments study the effects of multi-task learning with MoFA on age estimation. The
experiments give insights about the source and the details of the results. For the
implementation, the Theano and Lasagne frameworks were used. The shown MAE
scores are computed per batch - the average score over all batch entries. For vali-
dation, it is the average over all batches of the validation. In all experiments, the
same validation set of 960 Wiki images was used.

4.1 Data

In this section, all the datasets that are further used and their cleaning methods
are presented. Then, the techniques that are applied for training and validation set
balancing and training batch balancing are explained.

A most suitable dataset would be fairly large to accommodate for the large set of
parameters to learn and the complexity of the monocular face reconstruction task.
The labels must be as uniformly distributed as possible to prevent the model from
being biased towards a specific range of label values. The number of identities should
be as large as possible to prevent overfitting. However, finding a dataset that meets
these requirements is a challenge. A number of fairly small datasets are available:
FACES [Ebner et al., 2010], RaFD [Langner et al., 2010], 3DFE [Yin et al., 2006],
Bosphorus [Savran et al., 2008]; for apparent age estimation: 2016 Looking at People
CVPR Challenge - Track 3. However, their size makes them unsuitable for training
in the case of this research. The AdienceFaces dataset [Eidinger et al., 2014] is larger
but the ground truth age is discretized into bins, while we are interested in up to
the year accuracy of the prediction. The datasets that were used are next described.
Their sizes after the cleaning process are arranged in 4.1.
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Original size Cleaned size
Wiki 62,000 15,384

UTKFace 23,095 23,095
AgeDB 16,488 11,683
FGNET 1002 990

Table 4.1: Sizes of the used datasets before and after cleaning.

4.1.1 Datasets

IMDB-WIKI

IMDB-Wiki [Rothe et al., 2018] is a large scale dataset, annotated with age and
gender, consisting of two parts - IMDB Faces and Wiki Faces. IMDB Faces has
around 460,000 face images collected and annotated from the actor profile pages
at IMDB. Wiki Faces has 62,000 images collected and annotated from Wikipedia
articles describing people.

The dataset is the largest dataset available with age annotations.
In this thesis, only the Wiki Faces subset was used, as it has much more accurate

annotations than the IMDB Faces subset. Specifically, the provided set of cropped
faces dataset is employed (Wiki Faces Cropped).

However, there were still a lot of incorrect labels and additional processing was
required. All the people with annotated age greater than 100 were removed.

Some of the photos were crawled from sandbox pages and user pages, which
contain dummy data and unregulated by the staff content - these were removed. As
in black-and-white images albedo and illumination are difficult to be differentiated,
all of them are removed. Detection of a black-and-white image is done by checking
if it has more than 100 pixels which have a significant difference (above a specific
threshold) of their channels. This check still doesn’t detect some small amount of
the images. Unsuccessful face detections (used for cropping the faces) and instances
of a placeholder image were also removed

Even after cleaning there are still a lot of non-face images. Further cleaning was
done by running the dlib face detector. In the process, however, some true faces are
also deleted. After all the procedures, the size of the dataset is 15,384 images.

UTKFace

The UTKFace dataset [Zhang and Qi, 2017] consists of 23,095 images of faces,
annotated with age, gender and ethnicity. It contains a wide range of ages with
a fair amount of data points for each age group, which is an advantage compared
to IMDB-WIKI. It is visually clean in terms of correctness of image content. The
provided set of cropped faces was used and no processing was necessary. We use
this dataset for cross-dataset MAE evaluation.

A disadvantage is that the human annotation is based on correcting the state-
of-the-art age estimation of the image. Since the baseline and the proposed age
estimation model are both evaluated on this same dataset for comparison, the pres-
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ence of noise in the labels is not critical for this work.

AgeDB

AgeDB [Moschoglou et al., 2017] is an in-the-wild face dataset of 16,488 images
of 568 subjects. It is manually annotated with labels accurate to the year and
so it is noise free. The annotation was performed by manual searches in Google
Images and saving only the ones with an explicitly mentioned year of taking in the
accompanying caption. The age distribution is highest at the age interval [30, 40].
Data is very scarce for ages outside the interval [15, 85].

The dataset was processed by removing black-and-white images and running
the dlib face detector [King, 2009] to filter out images without facial landmarks
detection. This reduced the dataset to 11683 images. It was used for cross-dataset
evaluation for comparing the MAE measures between the age estimation baseline
and a proposed model.

FG-NET
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Figure 4.1: FGNET distribution.

FG-NET is a database of 1002 images of faces annotated with age. It is widely
used for the evaluation and comparison of age estimation models. Its purpose in
this work, as with UTKFace and AgeDB is also cross-dataset evaluation.

After extracting faces using dlib face detector [King, 2009], the dataset was
reduced to 990 images. The distribution is depicted in Fig. 4.1. This dataset
contains a disproportionate amount of children. This has to be kept in mind when
evaluating a model trained on scarce children data.

4.1.2 Face extraction

For all the datasets, the dlib face detector [King, 2009] was adopted to detect
facial landmarks. They were stored to be used in training later and their bounding
boxes were stored for cropping the face and pass only this image for training. To
be sure the full face is captured in the crop and that it has the right scaling for the
face reconstruction pipeline, a 20% margin is added to all sides of a face box.
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(a) Wiki original (b) Wiki after

(c) UTK original (d) UTK after

(e) AgeDB original (f) AgeDB after

Figure 4.2: Datasets age distributions before and after cleaning and balancing.

4.1.3 Balancing

The distribution of a dataset is important to consider for the quality of model
training and evaluation. First, having a very uneven distribution means that the
model would be biased to predict in the range where the most mass is. It is best if
the training dataset distribution is as uniform as possible.

On 4.2 the original (after processing) and the balanced distributions are shown.
For all datasets, their distributions’ maximum values were clipped to a threshold.
This threshold was chosen, considering the tradeoff between uniformity and dataset
size.
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For all datasets, the maximum threshold was chosen to be 600 and the maximum
age - 80.

A validation set for a model is built by taking a certain percentage of the entire
data. To make sure that it is representative, it is always made sure that it is
distributed as similarly as possible to the training set. Ideally, the validation set
would be uniformly distributed, but if such a requirement is enforced, then there
will not be enough data to train for some less represented labels in the full dataset.
Instead, the same percentage of each bin in the distribution is taken for validation,
which always ensures as sufficient as possible amount of training data.

Secondly, it is also important the order in which the data is taken for training.
Training with too similar examples again causes a bias for the model prediction.
This calls for balancing the training batches to have as diverse data in a batch as
possible. [Kokkinos, 2017] perform training by placing an equal amount of examples
for each label in a training batch. As age has many possible labels, five age groups
were selected. It is necessary that each of the groups have about the same amount
of examples. To ensure that, the boundaries of the groups were chosen to be the
20th, 40th, 60th and 80th percentiles of the dataset distribution. As the division is
not exact, some of the groups can still have more data. When building a batch, an
equal amount of examples is taken from each set. Drawing is done independently
for each group by iterating over a sequence of data points without repetition. If
there are no more elements in a group, iteration jumps to the start of the sequence.
In this way, the notion of epochs is preserved in the context of a group.

4.2 Establishing baselines

Experiment 1: Age Estimation Visual Baseline

In this experiment, we test how the cross entropy and two distance-based clas-
sification losses - EMD and the proposed CDL, perform in comparison with each
other. This will allow us to make reasonable choices for a baseline and for use in
the models combining the 2D image with 3D face geometry.

Experimental Setup:
Wiki was chosen as the training dataset. It was noticed that validation score

was oscillating too much at a later stage in training in general. This was the result
of the learning rate η being too high at this later stage. For this reason, learning
rate decay was implemented. The specific approach is step decay - linearly reducing
the learning rate with the increase of iterations passed:

η = ηinit · λ
t
δ (4.1)

,where νinit is the learning rate at the start of training, t is the number of itera-
tions passed, λ ∈ (0, 1) and δ are predetermined parameters. Their meaning is that
the learning rate is gradually decreasing to reach one more full decay rate λ at every
δ iterations. After experimenting, λ was set to 0.8 and δ - to 20000.

Another encountered problem was overfitting. To reduce this effect, L2 regular-
ization penalty was added to the loss with weight 0.01.
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The λ parameter of Class Distance Loss was set to 0.2 after carefully checking
that in our case the distance loss component stays close to the value of Cross Entropy
for the most part in training and in this way does not overtake it.

A model with each of the losses was trained on the cleaned Wiki dataset. The
validation MAE through time is visualized in Fig. 4.3a.

Results:
Looking at the results in Fig. 4.3, the models are seen to be overfitting before

reaching 10,000 iterations even with harsh regularization. This is especially visible
from the rising validation loss in Fig. 4.3b. The point with the minimum score is
chosen to avoid the overfitted results.

learning rate (lr) 1e-5
lr decay rate (λ) 0.8

lr decay interval (δ) 20000
batch size 5
optimizer Adam

L2 regularization weight 0.01

Table 4.2: Age estimation training parame-
ters

The models’ MAE measures are
listed in Table 4.3. The results from
both EMD and the class distance loss
show the benefit from explicitly im-
plementing distance in the loss. Class
distance loss outperformed EMD, al-
though not with much. For further
experiments, the chosen loss is the
class distance loss for a combined ap-
proach.

Parameter tuning showed that
the same learning rate and decay pa-
rameters as in the MoFA baseline
work well. This is important because when the two baseline models are combined
with multi-task learning techniques later, unified parameters for the entire network
can be used. In this way, additional parameter tuning would not be needed to ensure
better stability of the network. The chosen parameter values are listed on Table 4.2.

Loss MAE
Cross Entropy 6.12

EMD 5.98
Class Distance 5.86

Table 4.3: Final MAE score of loss functions

Experiment 2: Monocular 3D Face Reconstruction Baseline

Experimental Setup:
In this experiment, the implementation of the monocular face reconstruction is

trained to test how well it performs after training on the Wiki dataset and to keep
the results for comparison with later models. The Wiki dataset is fairly small and
this experiment will show if this impacts 3D facial geometry negatively.

The implementation sticks closely to the original MoFA model that was described
in Section 3.1. The encoder has the original architecture of AlexNet. Weights from
training for image classification on ImageNet were obtained and loaded before every
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Figure 4.3: Classification losses experiment.
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Figure 4.4: MoFA baseline photometric loss.
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experiment. The training parameters, established as default are as shown in Table
4.4.

MoFA was trained on Wiki for 200,000 iterations by loading standard pre-trained
AlexNet weights on ImageNet classification. It is important to note that, while age
estimation needs balancing of the batches, this task has no discrete labels, and so
batch balancing was not performed. This lead to a higher amount of data available
for training.

Results:
A measure of performance is the photometric loss, showing how close a predicted

face pixel is to the corresponding one in the image. Fig 4.4 shows the photometric
component of the loss from training and validation. In the end, the validation
photometric loss is 0.103. For comparison, MoFA trained on the much larger CelebA
dataset [Liu et al., 2015] gives a photometric loss of 0.104 in the end.

learning rate (lr) 1e-5
lr decay rate (λ) 0.8

lr decay interval (δ) 20000
batch size 5
optimizer Adam
wlan 0.00192
wcol 1.92
wα 2.9 · 10−5

wβ 4.93 · 10−8

wδ 2.32 · 10−4

Table 4.4: MoFA training parameters

Fig. 4.5 visualizes some recon-
structions from the validation set af-
ter training. First of all, the recon-
structions are reasonable - the iden-
tity, illumination, expression, and
pose are accurately reconstructed.
The model is also doing well with
quite extreme poses and faces of dif-
ferent weight, ethnicity, gender, and
age. Examples show also older and
younger people. Looking at the re-
constructions, older age can be visu-
ally noticed. One feature is that older
people have more prominent cheek-
bones and protruding cheeks than
younger ones, especially directly to
the left and right of the mouth corners. This is the result of fat depositing through
aging. Noticing age on the reconstructed geometry already shows that it already
contains age information.

4.3 MoFA and age relationship

Experiment 3

The encoding learned when training a morphable model is known to encode
facial attributes. With BFM 09 a specific vector is provided that, when multiplied
by the principal components, alters the age attribute of the result. As BFM 2017 is
designed to be even more descriptive, age estimation is expected to gain from the
features required for an accurate hidden age encoding.

The question remaining is if monocular 3D face reconstruction can correctly
learn to represent this hidden encoding, corresponding to the age of the person. As
already discussed in Section 1, age has a notable impact on the face shape, and
for older ages - on albedo and fine geometry, because of skin sagging and texture
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Figure 4.5: MoFA reconstruction examples from Wiki validation.

changes. MoFA does not model wrinkles and skin details well because of the linear
model. This means we expect more general features to show age - like overall face
shape, nose pointiness, prominence of nose flaps and the amount of protrusion of
the cheeks. One claim to make is that the shape component can be expected to be
a sufficient source of improvement of age estimation accuracy. Another one is that
monocular 3D face reconstruction has to learn these age-related shape features, so
it can achieve more likely-looking reconstructions with age characteristics matching
the subject’s age.

Experimental Setup:
Age estimation with MAE loss is trained on only the shape parameters of code

vectors, generated by the pre-trained 3D face reconstruction from Experiment 2. It
has to be noted that the layers of the 3D face reconstruction pipeline are frozen and
only the regression layer is trained. This ensures that the work of estimating 3D
facial geometry is unbiased by age estimation.

The training dataset is Wiki - the pre-trained MoFA was trained to reconstruct
well on it. The learning rate had to be increased to 10−3 and no learning rate decay
was used.

Results:
Fig. 4.6 shows the validation performance over time. After 40,000 iterations, the

regressor scores 7.07 MAE undoubtedly showing that the shape parameters contain
age information. Moreover, monocular 3D face reconstruction generated these code
vectors, so it indeed successfully learned to express this age information.
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Figure 4.6: Age estimation validation loss on Wiki, of regression on shape parame-
ters, generated by monocular 3D face reconstruction.

4.4 Proposed Multi-Task Learning Architectures

Experiment 4

Next, we attempt to train classification age estimation and 3D face reconstruction
together. The expectation is that they will be able to benefit from each other by
correcting and monitoring each other’s features and from the regularization inherent
to multi-task learning.

Hard parameter sharing introduces the weight parameter. A higher weight for
age estimation will make its gradients dominate the network. This has two effects:
3D face reconstruction can be impaired by extreme unhelpful changes from age
estimation and also would have a small influence on this second task. A too low
weight means that the age estimation gradients are too small for the task to learn
independently the important features that are unavailable in the estimated 3D facial
geometry - e.g. wrinkles. We study the effect of changing the weight parameter.

Having a single CNN means that the features are constantly changed from both
tasks. If the tasks are not close in terms of goal, it is beneficial to have separate
features for each of the tasks at some layers. In this sense, this experiment also gives
an understanding if there is a big overlap between the goals of the two tasks.

It is expected that if 3D facial geometry does not help in this architecture, the
score will consistently increase by putting more emphasis (higher weight) on the age
estimation because its gradients are consistently increasing. Otherwise, for some
lower weight, the score will be better.

Experimental Setup:
The particular architecture that is trained, is described in Section 3.3.1.
Training was performed with dropout with drop rate 0.7 and L2 regularization

penalty with weight 0.00001 to be consistent with the following experiments with
the soft parameter sharing. For a fair comparison, the age estimation baseline with
Class Distance Loss was retrained with the same regularization choices. The single
AlexNet was initialized with ImageNet weights.

Results:
Fig. 4.7 and Table 4.5 gives an overview of the validation performance of models

with different weights. The pattern of the 3D face reconstruction photometric loss
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shows that age estimation has no sufficient influence on 3D face reconstruction
in the current setup. However, it should be kept in mind that photometric loss
is not explicitly and solely evaluating the 3D geometry of the reconstruction. This
architecture showed small age prediction improvements over the baseline. The MAE
scores were decreasing with putting lower weight but this is a sign that this task
could use smaller gradient update steps. However, with a weight of 0.1, the gradients
are too small and convergence is slower.

This experiment showed us that the simple sharing of the entire network is not
a good enough choice of architecture and despite the presence of age cues for 3D
facial geometry, some independence is required by the two tasks.
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Figure 4.7: Hard parameter sharing with different task weights. Here we denote the
3D face reconstruction weight with wA and the age estimation weight with wB.

Age estimation weight MAE
baseline 5.85

0.1 5.95
0.3 5.74
0.5 5.78
0.7 5.83
0.9 5.89

Table 4.5: Scores from hard parameter sharing.
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Experiment 5

In the previous experiment, we attempted an architecture with fixed sharing of
the entire CNN. However, a different part of the CNN may be more suitable to train,
as discussed in Section 3.3.2. Instead of testing an extensive amount of architectures
with hard parameter sharing, we train a soft parameter sharing architecture to learn
what layers are helpful to share for a reduced loss on age estimation and 3D face
reconstruction losses and to what extent. It is expected that the age estimation
pipeline in this architecture will make use of the 3D facial geometry features. Also,
classification has overfitting issues and can use additional forms of regularization.
As discussed in Section 2.4, multi-task learning provides regularization. Therefore,
we expect there to be a significant improvement over the baseline.

Experimental Setup:
We employ the Cross-Stitch Network architecture, as described in 3.3.2. First,

we consider the regularization technique to use for classification with soft parameter
joint learning. As there is a regularization term in the 3D face reconstruction, it is
not helpful to do L2 regularization on its weights. This leaves us with the choice to
do the L2 penalization only on the age estimation’s branch. However, we chose the
small weight of 0.00001 for the L2 penalization and also do dropout on the final layer
of age estimation. In this way the effect of direct regularization cannot be traced
from a single branch and age estimation would not try to overtake the unpenalized
MoFA branch. The chosen drop rate was 0.7 after some experimentation. For com-
parison, we use the retrained Class Distance Loss baseline with the above-described
regularization scheme.
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Figure 4.8: Soft parameter sharing - Validation MAE

Classification MAE
baseline 5.85

CSN 5.58

Table 4.6: Scores from soft parameter sharing.

Results:
As seen from the results on Fig. 4.8 and Table 4.6, the architecture offers a

sizeable reduction of the Mean Absolute Error on Wiki validation set.
Fig 4.9 visualizes how the α parameters change with the training of the classi-

fication model. To remind, although the parameters are initialized to do blending
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with weights summing to 1, they are not constrained to do so while training, as
part of the original architecture. Scaling up or down of the features of both layers
can happen in any configuration. We judge the importance of a sharing layer by
checking individually for each shared layer if the sharing parameter increases and
how much. It can be noticed that the third shared layer gives the most benefit to
age estimation. Sharing happens also on the first two layers. For the last two layers,
it seems that the preference of age estimation is to stay separated. This separation
allows the network to learn task-specific features with the fully connected layers but
still make use of 3D face geometry features from the convolutional layers.

Figure 4.9: Visualization of the α parameters for 25,000 iterations of training.

Experiment 6

Mean ± Std
baseline 5.86 ± 0.04

CSN 5.53 ± 0.03

Table 4.7: Means and deviations calculated
from 5 training sessions.

Experimental Setup:
For classification, 5 training ses-

sions of the baseline and the soft pa-
rameter sharing with age classifica-
tion each, were performed to test if
the improvement is a random devia-
tion.

Results:
On Table 4.7 are displayed the means and the standard deviations. The scores of

the soft parameter sharing model seem to be even lower than the one received from
the last trained model (5.58 MAE). The standard deviations are small and there
is no overlap between the baseline’s and the proposed model’s distributions of the
MAE scores. We can conclude that the improvement of soft parameter sharing over
the baseline is stable.

Experiment 7

Optimization can go in a different direction if we choose to share more between
the branches at the beginning. The goal of this experiment is to check what is the
optimal choice for initialization of the α parameters of the CSN.
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Our initialization follows the rules αBB = αAA and αAB = αBA = 1 − αAA. In
that way, each branch is sharing the same amount from the other. Also, by summing
to 1, it is ensured that the network is performing intuitively interpretable blending
at the start and that the scale of the features is preserved. Non-sharing (αAB and
αBA) values that are reasonable to test are in the range [0.5, 1]. If smaller values
are chosen, the branches would just switch their base CNNs. If they are larger, the
rule for the parameters summing up to one would be broken.
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Figure 4.10: Tuning of the α parameters.

MAE
αAA = 0.9, αAB = 0.1 5.58
αAA = 0.8, αAB = 0.2 5.68
αAA = 0.7, αAB = 0.3 5.52
αAA = 0.5, αAB = 0.5 5.47

Table 4.8: Final MAE scores from tuning α
parameters.

Training was done on Wiki with
the same parameters and choices pre-
viously adopted for CSN. Two ini-
tializations close to the recommended
one was tested (0.7 and 0.8 for the
non-sharing alphas) and one enforc-
ing much more sharing between the
branches (0.5). The validation MAE
for all the runs is plotted on Fig. 4.10
and the final scores are on Table 4.8.
The results show that age estimation immediately benefits from large sharing (0.5).
However, MoFA suffers in this case as it has to compete with the other task -
despite balancing MoFA has smaller gradients at the start of training. Moderate
sharing proves most helpful for both tasks. We choose this best model for further
experiments.
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Experiment 8

Considering the reconstructed 3D facial geometry is age-related, it can be claimed
that 3D face reconstruction alone learns internal features in its AlexNet that are age-
related. This naturally would make these features suitable for direct use from age
estimation. It can be argued that much of the success of soft parameter sharing for
age classification comes from the pretraining. We study this claim by initializing the
visual age estimation baseline with 3D face reconstruction pretraining and training.
Then the obtained validation MAE is compared with the ones from the baseline and
the soft parameter sharing model.

Experimental Setup:
The age estimation baseline with Class Distance Loss was trained with initially

loading the same MoFA weights that were used as a pretraining in the soft parameter
sharing architecture - the ones from pretraining on Wiki for 100,000 iterations. The
rest of the parameters correspond to the ones in the proposed soft parameter sharing
model and the baseline.

Results:
After training, the model achieved 5.62 validation MAE. This shows the ma-

jor source of the success of the soft parameter sharing model - making use of the
pre-trained 3D facial geometry features. Also, it explains why higher sharing α pa-
rameters work well. With soft sharing, however, a better MAE score was achieved
(5.47 was the best). The multi-task learning properties to regularize the combined
tasks account for this improvement. The comparison is shown in Fig. 4.11.

Note that the pretraining was done on the cleaned and clipped Wiki dataset,
which is the same as the training data for the soft parameter sharing model, but
without batch age balancing. Having the same dataset ensures that the 3D facial
geometry does not have the advantage of assimilating a greater or different amount
of data.
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Figure 4.11: Validation MAE comparison of a pretrained on MoFA baseline.

Experiment 9

To show if the results extend beyond the dataset used for training, evaluation is
done on FGNET, UTKFace, and AgeDB. The expectation is to obtain MAE scores
with soft parameter sharing, which are significantly larger than the MAE scores of
the baseline.

Experimental Setup:
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UTKFace FGNET AgeDB
baseline 9.73 16.89 10.27

CSN 9.54 16.54 10.01
t-test p-value 3.22 · 10−9 0.01 1.78 · 10−8

Table 4.9: MAE scores from cross dataset evaluation.

We obtained the weights from a soft parameter sharing model trained on Wiki
and did not do any fine tuning on the target datasets - cross-dataset evaluation.
This lack of fine-tuning means we do not expect low MAE scores but we expect to
see CSN giving lower scores than the ones from the baseline.

Results:
Results are shown on Table 4.9. It can be seen that these expectations are met.

The improvements are significant, their consistency shows the soft sharing multi-task
learning model is generalizable.

Experiment 10

Figure 4.12: Distribution of differences be-
tween MAE measures of the baseline and the
soft parameter sharing model.

In this experiment, we attempt to
confirm the statistical significance of
the MAE improvement that the soft
parameter sharing model brings.

Experimental Setup:
Statistical testing was performed

on the model with the lowest score
(αAA = 0.5). First, it has to be es-
tablished that we want to compare 2
distributions - each being build from
the age differences between validation
labels and predictions. In the first
distribution, the predictions are from
the baseline and in the other - from the CSN model. We want to show that there are
significant differences between the two distributions. The difference between both
is plotted in Fig. 4.12.

Visually, this has a resemblance with the normal distribution. If normality is
established, the most popular statistical testing method - t-test can be used without
concerns. After running a normality test, normality was confirmed (the score is
1.79 · 10−20 - far less than the threshold of 10−3). The null hypothesis now is that
the mean of the two distributions is not significantly different - in the specific case,
the difference between the two distributions has mean 0. The difference is needed
to enforce the pairing of the sample values and prevent variance confusion.

Results:
After running t-test, significance was confirmed. The p-value is 2.70 · 10−5 - less

than the generally used threshold of 0.05 for null hypothesis rejection, the statistic
is 4.218 - larger than the threshold for 99% confidence.

Before normality was established here, testing with Wilcoxon non-parametric
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test was also done. This test also checks if the distributions are the same but do
not require normality. It also confirmed the significance of results with a p-value of
2.77 · 10−4.

Experiment 11

In the current experiment, we explore if the MAE improvement observed from
soft parameter sharing is expressed in certain age groups. We expect there to be an
improvement in the groups with smaller but sufficient training data, where regular-
ization can help.

Experimental Setup:
All the predictions of the trained soft parameter model for Wiki Validation,

AgeDB, UTKFace, and FGNET were extracted and stored. The same was done for
the age estimation baseline. Using the collected predictions, a comparison between
the two models is done, as described below.

Results:
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Figure 4.13: MAE Variance on Wiki validation. The x axis represents individuals,
sorted by their ground truth age; the y axis represents the age. Orange points show
ground truth age and blue points - predictions.

On Fig. 4.13 the variance is visualized for the baseline and the soft parameter
sharing model. The differences are subtle, but it can be still noticed that the overall
variance is reduced in the results from joint learning - the predictions are closer to
the ground truth curve.

The boxplots in Fig. 4.14 and Fig. 4.15 show a comparison of the baseline
and the proposed soft sharing model for age groups with a width of 10 years. For
each group, the significance, the mean and the significance p-value are shown. The
chosen statistical testing is Wilcoxon because then normality does not need to be
established for each age group.

The FGNET results, although showing improvement, are not to be considered
because of insignificance noticed from the high p-values on every age interval on Fig.
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Figure 4.14: Age group boxplots of Wiki validation MAE results.

4.15b. One major problem with training our models is the lack of data for young
people and FGNET’s distribution is skewed towards children.

The too scarce data between 0 and 20 years and above 60 years gives also a
small sample size for statistical testing which affects the MAE scores and the p-
values. The improvements, noticed on the boxplots, are in the range between 30
and 50 years old. Most of the data is concentrated between 20 and 35 years old.
Ranges that have less data but still enough for training seem to benefit more from
the additional 3D face geometry and the regularization.

The conclusion is that the significant improvement comes from the age range 30
to 50 years old, which was shown with statistical significance on Wiki validation,
AgeDB, and UTKFace.

Experiment 12

Here we show image examples and their age predictions from the baseline and
the soft parameter sharing model in an attempt to find further insights when our
proposed method succeeds and fails. In Experiment 2, it was already observed
that 3D face reconstruction is doing well with non-frontal face poses. A reasonable
reconstruction of non-frontal face image encodes 3D geometry in the same way as
it would with a frontal face. Therefore, we expect improvement for non-frontal
face poses when employing 3D face geometry features. Pure geometry also does
not contain facial expression. Therefore we expect a noticeable improvement for
extreme facial expression. To test these claims we design a procedure to divide
the validation images into groups of expression and pose extremeness and then we
evaluate the MAE improvement for each group.

Experimental Setup:
First, the MAE scores for each image in the Wiki validation is obtainedd for

the baseline (MAEbaseline) and the soft parameter sharing model (MAECSN). The
MAE difference between the two scores for each image is then computed with
MAEbaseline − MAECSN . This gives us how much the proposed model is better
than the baseline for this image. Negative value means that the soft sharing model
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(a) AgeDB

(b) FGNET

(c) UTK

Figure 4.15: Age group boxplots of the cross-dataset evaluation MAE results.

is giving worse predictions than the baseline. Each image in the validation is asso-
ciated with a blendshape vector and rotation. We obtain metrics for each of those
items, which we will use to build groups of images.
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For blendshapes we calculate the Eucledian norm of the vector:
√∑64

i=1 v
2
i , where

vi is one of the 64 values in the vector. Since the vector is the deviation from the
mean face (and the mean expression is the neutral expression), this is a measure
of how extreme the expressions are. For rotation, we take the maximum of the
exponential coordinates that parameterize a rotation in SO3 space. It gives us a
measure of how extreme the predicted pose is.

We sort all the images in the validation set by each of the metrics described
above, in increasing order. The sorted validation set is next divided into intervals
based on the measure. For blendshapes the metric is in the interval [0.49, 3.31]. We
split this interval into 6 groups with approximate size 0.3, the values at which the
interval is split are [1, 1.3, 1.6, 1.85, 2.45]. The small corrections in the intervals are
made so there is enough data for each group. Rotation values go from 0.002 to 0.45.
Each group has a width of 0.5, split values are [0.1, 0.2, 0.3, 0.35]. For each of the
intervals, the mean of the MAE differences over all the images falling in the interval
is computed and plotted.

Results:
Fig. 4.16 shows some samples from the validation set and their age predictions.

Improvement is generally noticed even across expressions and ethnicity.

Figure 4.16: Samples from the Wiki validation set and their age predictions.

Fig. 4.17 visualizes the expression severity of each group by showing samples.It
is seen that the expression starts from neutral and gradually introduces mouth
opening and smiles until extreme expressions are reached - strong smiles or widely
opened mouth. In Fig. 4.18 shows how the improvement over the baseline changes
throughout the groups. It can be seen that most of the improvement is focused
on the groups with non-neutral expression. It can be seen that given images with
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very extreme expression, there is a large amount of improvement from the proposed
model.

Fig. 4.20 visualizes what kind of poses each group contains. It is visible that
the first groups contain frontal faces, while the last groups - faces with large angles
to the camera. Fig. 4.21 visualizes the improvement offered by the soft parameter
sharing model for each of the rotation groups. It is seen that the trend is that with
increasing the amount of rotation, the improvement rises. The rotation invariance
of the geometry features can come in handy with the lack of rotation invariance of
the visual features. For more extreme poses, the visual baseline is likely to fail and
the model that includes 3D geometry can offer better predictions in this case, as can
be seen in Fig. 4.19.

Figure 4.17: Samples from the expression intensity groups. Each row contains sam-
ples from one group. Groups are sorted with increasing of the metric from top to
bottom

Figure 4.18: The MAE improvement of the proposed soft sharing model over the
baseline over the expression intensity groups. The expression intensity metric is
increasing in the groups from left to right.

48



4.4. MULTI-TASK LEARNING CHAPTER 4. EXPERIMENTS

Figure 4.19: Samples from the Wiki validation with non-frontal faces.

Figure 4.20: Samples from the rotation groups. Each row contains samples from
one group. Groups are sorted with increasing of the metric from top to bottom

Figure 4.21: The MAE improvement of the proposed soft sharing model over the
baseline over the rotation extremeness groups. The rotation extremeness metric is
increasing in the groups from left to right.
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Chapter 5
Conclusion

In this thesis, we set out to find the answer to the questions ”Can monocular
3D face reconstruction produce 3D facial geometry that is age discriminative?” and
”Can a combination of traditional age estimation with 3D facial geometry lead
to improved age predictions?”. Evidence shows that 3D facial geometry is age
descriptive [Angulu et al., 2018, Alley, 1988, Todd et al., 1980, Zhuang et al., 2010].
Also, it is known that statistical 3D face models employed by monocular 3D face
reconstruction solutions are biologically accurate. We argue that monocular 3D face
reconstruction should then implicitly learn age-related features in order to produce
quality geometry reconstruction. Standard age estimation relies only on 2D visual
information, that models mostly wrinkle and skin texture information [Choi et al.,
2011, Hayashi et al., 2002, Ng, 2015]. We are the first ones that seek to combine
the traditional age estimation with 3D facial geometry in an attempt to utilize this
new source of information and achieve improved age prediction as a result.

First, it has been shown that 3D a deep learning based 3D face reconstruction is
able to learn age implicitly, by finding that there is a correspondence between age
and the learned encoding for 3D facial geometry. This answers our first research
question - monocular 3D face reconstruction can produce 3D facial geometry that
is age descriptive.

Following the success of up-to-the-year age classification proposed by [Rothe
et al., 2018], we also employ classification for the noisy training dataset. We proposed
a new simple loss, which we refer to as Class Distance Loss, that is able to introduce
the concept of distance between the discrete age classes. It makes it easier for
the network to learn age-related features characterizing a small interval around the
ground truth age. It outperformed cross entropy and EMD losses.

We have applied a multi-task soft parameter sharing architecture to combine age
estimation and 3D facial geometry. The performance of this new model was studied
for age estimation.

The soft parameter sharing model was able to give statistically significant im-
provement on the Mean Absolute Error (MAE) scores from validation and cross-
dataset evaluation on the external datasets FGNET, UTKFace, and AgeDB. It was
shown that the internal 3D geometry features are a great source of improvement,
as they caused a decreased MAE measure when the 3D face reconstruction baseline
weights were used as age estimation initialization.
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Comparative analysis on the MAE results of the soft sharing model and the
visual baseline showed that the proposed model excels in extreme expressions and
poses, and to increasing expression intensity and rotation up to a certain level. The
causes of the improvement is the invariance of the 3D facial features to pose and
expression.

From the results of the proposed combined model and the fact that 3D facial
geometry was identified as a main source of improvement, we have found the answer
of the second research question: traditional age estimation can benefit from 3D facial
geometry features as an additional source of information.

5.1 Future Work

Children were underrepresented in the available training set. Considering that
age geometry changes occur at the early stages of life, 3D face reconstruction is
expected to greatly influence age estimation in exactly these age groups. A large
enough children’s faces dataset is not publicly available and obtaining one is a diffi-
cult task. Even if collected data is not substantially larger than for other age groups,
a specialized model for children age estimation can be trained and combined with
the full model, as in [Antipov et al., 2016].

MoFA with BFM 2017 results in quite smoothed faces. Introducing additional
fine details on top of the predicted geometry and including them in the age estima-
tion procedure can help to capture important subtle features that define age.

This thesis focuses on improving the age estimation task with monocular 3D
face reconstruction. However, the face reconstruction task can also benefit from age
estimation. 3D face reconstruction can learn to create more likely facial geometries
with the visible age of the person.

While we looked into age estimation, a range of other tasks can be improved by
or used to improve estimation of monocular 3D face reconstruction. For example,
the expression and emotion prediction tasks are directly related to the blendshape
component of the code vector and gender classification - to geometry and albedo.

A promising direction is to further study how good are the weights of the 3D face
reconstruction model as pre-training for age estimation. DEX owes its success to
pre-training on IMDB-Wiki. In this thesis the benefit of pre-trained 3D face recon-
struction weights for age estimation became clear. The two pre-training methods
can be compared to see if 3D face reconstruction is actually better. Also, combining
both methods by initializing with the 3D face reconstruction weights fine tuning on
IMDB-WIKI could lead to more accurate age estimation.
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